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ABSTRACT
This paper presents a new tool called Extrapolate that automatically
generalizes counterexamples found by property-based testing in
Haskell. Example applications show that generalized counterexam-
ples can inform the programmer more fully and more immediately
what characterises failures. Extrapolate is able to produce more
general results than similar tools. Although it is intrinsically un-
sound, as reported generalizations are based on testing, it works
well for examples drawn from previous published work in this area.
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1 INTRODUCTION
Most programmers are familiar with the following situation: a
failing test case has been discovered during testing; but it is not
immediately apparent what more general class of tests would trig-
ger the same failure. The programmer may resort to painstaking
step-by-step reevaluation of the reported failure in the hope of re-
alizing where a fault lies. In this paper, we examine a less explored
approach: the generalization of failing cases informs the program-
mer more fully and more immediately what characterises such
failures. This information helps the programmer to locate more
confidently and more rapidly the causes of failure in their program.
We present Extrapolate, a tool to generalize counterexamples of test
properties in Haskell. Several example applications demonstrate
the effectiveness of Extrapolate.
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Example 1.1. Consider the following faulty sort function:

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = sort (filter (< x) xs)

++ [x]

++ sort (filter (> x) xs)

The function sort should have the following properties

prop_sortOrdered :: Ord a => [a] -> Bool

prop_sortOrdered xs = ordered (sort xs)

prop_sortCount :: Ord a => a -> [a] -> Bool

prop_sortCount x xs = count x (sort xs) == count x xs

that together completely specify sort.
If we pass both properties to an established property-testing

library, such as QuickCheck [11] or SmallCheck [33], we get some-
thing like:

> check (prop_sortOrdered :: [Int] -> Bool)

+++ OK, passed 500 tests.

> check (prop_sortCount :: Int -> [Int] -> Bool)

*** Failed! Falsifiable (after 4 tests):

0 [0,0]

That is, prop_sortCount 0 [0,0] = False. If instead we test
using Extrapolate, then for the failing property, in addition to a
specific counterexample, Extrapolate prints:

Generalization:

x (x:x:_)

Some values have been generalized: the specific value 0 does not
matter, prop_sortCount x (x:x:_) = False for any integer
x; the tail value _ does not affect the result. Extrapolate also prints:

Conditional Generalization:

x (x:xs) when elem x xs

This hints that our faulty sort function fails for lists with repeated
elements. We return to this example in §4.1. □

In general, if Extrapolate finds a counterexample, then the prop-
erty is definitely false. Any specific counterexample displayed by
Extrapolate is valid. A displayed generalization may or may not be
valid. However, a generalization is only displayed if a specific coun-
terexample has first been found and displayed. So Extrapolate never
incorrectly reports a property to be false, even though a generalized
counterexample may be invalid (or loose, cf. §6).
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1.1 Contributions
The main contributions of this paper are:

(1) methods using automated black-box testing to generalize
counterexamples of functional test properties by replacing
constructors with variables, where these variables may be
repeated or subject to side-conditions;

(2) the design of the Extrapolate library, which implements these
methods in Haskell and for Haskell test properties;

(3) a selection of small case-studies, investigating the effective-
ness of Extrapolate;

(4) a comparative evaluation of generalizations performed by
Extrapolate and similar tools for Haskell.

Despite the Haskell setting of the implementation and experiments,
we expect similar techniques to be applicable in other functional
programming languages.

1.2 Road-map
This paper is organized as follows:
§2 describes how to use Extrapolate;
§3 describes how Extrapolate works internally;
§4 presents example applications and results;
§5 discusses related work;
§6 evaluates Extrapolate in comparison with similar tools;
§7 draws conclusions and suggests future work.

2 HOW EXTRAPOLATE IS USED
Extrapolate is a library (loaded by “import Test.Extrapolate”).
Unless they already exist, instances of the Listable (§3.1) and
Generalizable (§3.2) typeclasses are declared for needed user-
defined datatypes (step 1). The check function is then applied to
each test property (step 2).

Step 1. Provide class instances for used-defined types. Extrapolate
needs to know how to generate test values for property arguments
— this capability is provided by instances of the Listable typeclass
(§3.1). Extrapolate also needs to manipulate the structure of test val-
ues so that it can perform its generalization procedure— this capabil-
ity is provided by instances of the Generalizable typeclass (§3.2).
Extrapolate provides instances for most standard Haskell types
and a facility to derive instances for user-defined data types using
Template Haskell [34]. For applications in which values of algebraic
datatypes can be freely constructed, as there are no constraining
data invariants, writing deriveGeneralizable ’’<Type> is
enough to create the necessary instances. Extrapolate’s online doc-
umentation explains how to define these instances manually.

Step 2. Call the property-checking function. The function check
tests properties. If counterexamples are found, it reports them and
any candidate generalizations.

Example 1.1 (revisited). Figure 1 shows the program used to
obtain the results in §1. □

When exploring conditional generalizations, Extrapolate limits
conditions by size. Size is defined as the number of symbols in an
expression added to the sizes of constants as defined by LeanCheck’s

import Test.Extrapolate

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = sort (filter (< x) xs)

++ [x]

++ sort (filter (> x) xs)

prop_sortOrdered :: [Int] -> Bool

prop_sortOrdered xs = ordered (sort xs)

where

ordered :: [Int] -> Bool

ordered (x:y:xs) = x <= y && ordered (y:xs)

ordered _ = True

prop_sortCount :: Int -> [Int] -> Bool

prop_sortCount x xs = count x (sort xs)
== count x xs

where

count :: Int -> [Int] -> Int

count x = length . filter (== x)

main :: IO ()

main = do

check prop_sortOrdered

check prop_sortCount

Figure 1: Full program applying Extrapolate to properties of
sort used to obtain the results in §1.

Listable enumeration (§3.1). This definition is similar to the one
used in our previous work on Speculate [5]. By default, Extrapolate:

• tests properties for up to 500 value assignments;
• considers side conditions up to size 4;
• uses Speculate to find equivalences between expressions of
up to size 4 avoiding many redundant equivalent conditions
(§3.3).

Extrapolate allows variations of these default settings. The number
of configured tests affects the runtime linearly so long as the un-
derlying Listable enumeration has linear runtime. The size limit
of side conditions affects runtime exponentially so it should be
adjusted with caution. Our choice of default parameters aims for a
runtime of a few seconds. For all the examples in §4 Extrapolate
terminates in less than 10 seconds.

3 HOW EXTRAPOLATEWORKS
Extrapolate works in three steps:

(1) it tests properties searching for counterexamples, and if any
is found, steps 2 and 3 are performed (§3.1);

(2) it tries to generalize counterexamples by substituting vari-
ables for constants (§3.2);

(3) it tries to generalize counterexamples by introducing vari-
ables subject to side conditions (§3.3).
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Throughout this section we shall use the following example to
illustrate how each step of Extrapolate works.

Example 3.1. In Haskell, the Data.List module declares the
function nub, that removes duplicate elements from a list, keep-
ing only their first occurrences. Consider the following incorrect
property about nub:

prop_nubid :: [Int] -> Bool

prop_nubid xs = nub xs == xs

When Extrapolate’s check function is applied to the above property,
it produces the following output:

> check prop_nubid

*** Failed! Falsifiable (after 3 tests):

[0,0]

Generalization:

x:x:_

Conditional Generalization:

x:xs when elem x xs

Coincidentally, the result for this example is similar to the result
we saw in §1 — but it is simpler. □

3.1 Searching for counterexamples
To test properties searching for counterexamples, Extrapolate uses
LeanCheck [2] which defines the Listable typeclass used to gen-
erate test values enumeratively.

We have used LeanCheck previously in other tools including
Speculate [5], a tool we use when generating conditional general-
izations (§3.3). More information on LeanCheck and the Listable
typeclass can be found in its Haddock documentation [3] and in
§4.1 and §4.2 of [4].

Example 3.1 (1st revisit). When Extrapolate’s check function is
applied to prop_nubid, it is tested for each of the list arguments:
[], [0], [0,0]. The property fails for the third list [0,0] and Extra-
polate produces its first two lines of output:

*** Failed! Falsifiable (after 3 tests):

[0,0] □

3.2 Unconditional generalization
Listing generalizations. After finding a counterexample, Extra-

polate lazily lists all of its possible generalizations, from most gen-
eral to least general, formed by replacing one or more subexpres-
sions with variables. Generality order is not total as some general-
izations are incomparable. So we consider candidate replacements
left-to-right.

Example 3.1 (2nd revisit). Recall the reported counterexample to
prop_nubid: [0,0], or, more verbosely, 0:0:[]. Its generalizations
frommost general to least general are: xs, x:xs, x:y:xs, x:x:xs,
x:y:[], x:x:[], x:0:xs, x:0:[], 0:xs, 0:x:xs, 0:x:[]
and 0:0:xs. □

Testing generalizations. For each of these generalizations, Extra-
polate tests for a configured number of value assignments whether
the property always fails. It reports the first generalization for
which this test succeeds. Although this process is unsound, as it
is based on testing, it works well for example applications drawn
from previous published work (§4). Any variables that appear only
once in generalized counterexamples are reported as “_”.

Example 3.1 (3rd revisit). The first three generalizations are not
counterexamples as there are possible assignments of values for
which the property returns True:

• xs — prop_nubid [] = True
• x:xs — prop_nubid (0:[]) = True
• x:y:xs — prop_nubid (0:1:[]) = True

The fourth generalization x:x:xs is tested and the property fails
for all tested assignments of values to the variables x and xs. So,
Extrapolate produces its third and fourth lines of output:

Generalization:

x:x:_

Since the variable xs appears only once in the generalized coun-
terexample, it is reported as “_”. □

3.3 Conditional generalization
Background functions. Before trying to discover conditional gen-

eralizations we must first decide which background functions are
allowed to appear in conditions.

The larger the number of functions in the background, the longer
Extrapolate will take to produce a conditional generalization. So,
we refrain from including a large set such as the entire Haskell
Prelude. If the algorithm used is ever refined to something faster
we may be able to include a larger set by default (§7).

Each type has a default list of functions to be included in the
background. These lists are declared as part of Generalizable
typeclass instances:

• for Ints, ==, /=, <=, <;
• for Chars, ==, /=, <=, <;
• for Bools, ==, /=, not;
• for lists, ==, /=, <=, <, length and elem;
• for Maybes, ==, /=, <=, <, Just;
• for tuples, ==, /=, <=, <.

For user-defined datatypes, the implementor of instances of the
Generalizable typeclass decides which functions to include in
the background. When using deriveGeneralizable, by default,
Eq instances have == and /= in the background and Ord instances
have < and <= in the background. Additional background functions
can be provided using the ‘withBackground‘ combinator. In our
experiments (§4), we found it useful to include in the background
functions already appearing in properties.

Whenever a property is tested, these background functions are
gathered for all types and component types of arguments of the
property being tested. The background of Bool is always included.

Background constants. Constants of the types being tested, ob-
tained from their Listable instances, are also included in the back-
ground.
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Example 3.1 (4th revisit). The background functions used when
testing prop_nubid :: [Int] -> Bool are
(==), (/=) :: Bool -> Bool -> Bool

(==), (/=), (<=), (<) :: Int -> Int -> Bool

(==), (/=), (<=), (<) :: [Int] -> [Int] -> Bool

not :: Bool -> Bool

length :: [Int] -> Int

elem :: Int -> [Int] -> Bool

alongwith enumerated constants of Bool, Int and [Int] types. □

Enumerating expressions. Extrapolate uses Speculate [5] to recur-
sively enumerate expressions formed by type-correct applications
of background functions to background constants and variables.
Speculate avoids generating many distinct but semantically equiv-
alent expressions by using results of previous tests to determine
equivalence classes of subexpressions, and term-rewriting to nor-
malize subexpressions to canonical forms. For further details see [5].
Expressions are enumerated lazily and limited by the configured
maximum size. This enumeration process is done only once for
each property that has a counterexample.

Enumerating candidate conditions. Expressions of Boolean type
are used as candidate side-conditions.

Example 3.1 (5th revisit). With Extrapolate configured to con-
sider conditions up to size 3, Speculate returns the following 24
conditions

(1) p
(2) False
(3) True
(4) not p
(5) xs == ys
(6) xs == []
(7) xs /= ys
(8) xs /= []

(9) xs <= ys
(10) xs < ys
(11) elem x xs
(12) elem 0 xs
(13) p == q
(14) p /= q
(15) x == y
(16) x == 0

(17) x /= y
(18) x /= 0
(19) x < y
(20) x < 0
(21) 0 < x
(22) x <= y
(23) x <= 0
(24) 0 <= x

where p :: Bool; x,y :: Int; xs,ys :: [Int]. In addition,
repeated variable instances of these conditions are tested when
searching for candidate conditional generalizations. □

Discarding neutral side-conditions. Neutral conditions are those
yielding generalizations equivalent to a simpler counterexample.
For example [x,x] when x == 0 is equivalent to simply [0,0].
So any condition of the form <var> == <value> is discarded. So
too is any condition containing at least one variable v and found
true only for a single assignment of a value to v .

Turning off Speculate. The use of Speculate is optional and can
be turned off by: check ‘maxSpeculateSize‘ 0. Using Speculate
has two effects in most cases:

(1) runtime is significantly reduced;
(2) detection of neutral conditions is improved.

Listing conditional generalizations. For each generalization, Extra-
polate produces all possible Boolean conditions involving its vari-
ables based on the list of candidate conditions — this includes all
possible variable renamings.

Testing conditional generalizations. Extrapolate tests to find side
conditions under which the property fails all tests. Of these condi-
tions, Extrapolate selects the conditions satisfied in the most test
cases. Remember different side conditions may hold for distinct
numbers of test values.

This is similar to what we do in Speculate [5]: there we find side-
conditions to properties, whereas here we apply side-conditions to
generalized counterexamples.

Example 3.1 (6th revisit). Suppose Extrapolate has been config-
ured to explore conditions of up to size 3. For the first candidate
generalization, replacing [0,0] by xs, two candidate conditions
are listed:

(1) xs /= []
(2) elem 0 xs

Testing shows that the candidate generalization xs does not always
falsify the property under either of these conditions. For example,
the property does not fail for the list [0].

For the second candidate generalization, replacing 0:0:[] by
x:xs, Extrapolate lazily lists eight candidate conditions:

(1) xs /= []
(2) elem x xs
(3) elem 0 xs

(4) x /= 0
(5) x < 0
(6) 0 < x

(7) x <= 0
(8) 0 <= x

The property only fails for all test values of the form x:xs under
the second condition, elem x xs. Extrapolate reports its last two
lines of output:

Conditional Generalization:

x:xs when elem x xs □

4 EXAMPLE APPLICATIONS AND RESULTS
In this section, we use Extrapolate to generalize counterexamples
of properties about:

• a sorting function (§4.1);
• a calculator library (§4.2);
• a serializer and parser (§4.3);
• the XMonad window manager (§4.4).

These example applications are adapted from Pike [30]. We omit
just two of Pike’s examples: one concerns arithmetic overflow and
for the other we have incomplete information. The example appli-
cations in §4.2, §4.3 and §4.4 are respectively of small, medium and
large scale. In §4.5, we use generalizations as property refinements.
In §4.6 we give a summary of performance results for all these
applications.

It was during our experiments with these examples that we found
a simple rule of thumb for improving the results of Extrapolate:
to include in the background functions occurring in properties.
Automatically including these functions is left as future work (§7).

The complete source code for all examples described here is
included in the Extrapolate distribution package. The package in-
cludes other examples not discussed here for the sake of space.

In this section, we evaluate Extrapolate on its own. Comparison
with related work can be found in §6.
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4.1 A sorting function: exact generalization
Carrying on from the example described in §1 and Figure 1, if we
include count as a background function (§3.3),

> let chk = check `withConditionSize` 6

> `withBackground` [constant "count" count]

> chk prop_sortCount

Extrapolate prints:

Conditional Generalization:

x xs when count x xs > 1

This is an exact description of the test cases that fail.

4.2 A calculator language
In this section, we use Extrapolate to find and generalize coun-
terexamples to a property about the simple calculator language
described by Pike [30].

Expressions to be calculated are represented by the datatype Exp
and may contain integer constants, addition and division.

data Exp = C Int

| Add Exp Exp

| Div Exp Exp

The function eval evaluates Exps and returns a Maybe value:
• Nothing when the calculation involves a division by 0;
• Just an integer otherwise.

eval :: Exp -> Maybe Int

eval (C i) = Just i

eval (Add e0 e1) = liftM2 (+) (eval e0) (eval e1)

eval (Div e0 e1) =

let e = eval e1

in if e == Just 0

then Nothing

else liftM2 div (eval e0) e

The following function noDiv01, returns True when no literal
division by 0 occurs in an expression.

noDiv0 :: Exp -> Bool

noDiv0 (C _) = True

noDiv0 (Div _ (C 0)) = False

noDiv0 (Add e0 e1) = noDiv0 e0 && noDiv0 e1

noDiv0 (Div e0 e1) = noDiv0 e0 && noDiv0 e1

Using noDiv0, we define the following test property:
\e -> noDiv0 e ==> eval e /= Nothing

That is, if an expression contains no literal division by 0, evaluating
it returns a Just value.

Using Extrapolate, we find a counterexample and two general-
izations:

> check $ \e -> noDiv0 e ==> eval e /= Nothing

*** Failed! Falsifiable (after 20 tests):

Div (C 0) (Add (C 0) (C 0))

1Originally called divSubTerms by Pike [30]. We find it clearer to call it noDiv0.

Generalization:

Div (C _) (Add (C 0) (C 0))

Conditional Generalization:

Div e1 (Add (C 0) (C 0)) when noDiv0 e1

The property fails because it is not enough to test whether any
denominator is a literal zero constant, we should test whether any
denominator evaluates to zero. The generalized counterexamples
provide improved information for the programmer. Specifically,
constructors unrelated to the fault are generalized to variables.

To generate the above conditional generalization we manually
included noDiv0 in the list of background functions.

The following maximal generalizations (§6) are out-of-reach for
the current implementation of Extrapolate as the conditions are
too large with 9 and 16 symbols respectively.

Div e1 e2 when noDiv0 (Div e1 e2)

&& eval e2 == Just 0

Div e1 e2 when noDiv0 e1 && noDiv0 e2

&& e2 /= (C 0) && eval e2 == Just 0

At least one reader has suggested smaller expressions for these
conditions. They were mistaken! Machine checking is useful!

4.3 A serializer and parser
In this section, we apply Extrapolate to the parser and pretty printer
for a toy language described by Pike [30]. Programs in this language
are represented by the datatype Prog2, which can contain modules,
functions, statements, expressions, assignments, etc. For brevity,
we omit details of the implementation here, but it is included in the
Extrapolate distribution package. It has two main functions:

show' :: Prog -> String

read' :: String -> Prog

The serializer (show’) is defined in ≈ 100 lines of code. The parser
(read’) is defined in ≈ 200 lines of code. The parser includes a bug
that switches the arguments of conjunctions.

When we test the property that serializing followed by parsing
is an identity, Extrapolate reports a counterexample along with
generalizations:

> check $ \e -> read' (show' e) == e

*** Failed! Falsifiable (after 96 tests):

Prog [] [Func (Var "a")

[And (Int 0) (Bool False)] []]

Generalization:

Prog _ (Func _ (And (Int _) (Bool _):_) _:_)

Conditional Generalization:

Prog _ (Func _ (And e f:_) _:_) when e /= f

The reported conditional generalization clearly characterizes a set of
failing cases: the property fails whenever there is an And expression
with different operands. This characterization strongly hints at a
programming error failing to distinguish operands correctly.
2Originally called Lang by Pike [30]. We find it clearer to call it Prog.
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4.4 XMonad
XMonad [36] is a tiling window manager written in roughly 1700
lines of Haskell code. The XMonad developers defined over a hun-
dred test properties.

In this section, we use Extrapolate to find an artificial bug intro-
duced by Pike [30] in XMonad.

The function. XMonad has a function

removeFromWorkspace ws =

ws { stack = stack ws >>= filter (/=w) }

which removes a given window from a given workspace.

The bug. As described by Pike [30], we introduce an artificial
bug, replacing /= by == simulating a typo:

ws { stack = stack ws >>= filter (==w) }

The property. The following property prop_delete is one of
XMonad’s original test properties.

prop_delete x = case peek x of

Nothing -> True

Just i -> not (member i (delete i x))

A counterexample. In a regular enumerative property-based test-
ing tool, we would get the following minimal counterexample for
prop_delete (indented to improve readability):

> check prop_delete

Failed! Falsifiable (after 15 tests):

StackSet { current = Screen

{ workspace = Workspace

{ tag = 0

, layout = 0

, stack = Just ( Stack { focus = 'a'

, up = ""

, down = ""

} ) }

, screen = 0

, screenDetail = 0 }

, visible = []

, hidden = []

, floating = fromList [] }

A generalization. When we pass prop_delete to Extrapolate,
we instead get the following output (again indented to improve
readability):

> check prop_delete

*** Failed! Falsifiable (after 15 tests):

StackSet

(Screen (Workspace 0 0 (Just (Stack 'a' "" "")))

0 0)

[] [] (fromList [])

Generalization:

StackSet (Screen (Workspace _ _ (Just _)) _ _) _ _ _

Compare the non-generalized counterexample with its generaliza-
tion. We can see quite clearly which parts are actually related to the
fault: what characterizes failing cases is the presence of an optional
third argument (of type Maybe Stack) in the argument workspace.
Or, as Pike [30] explained “it turns out what matters is having a
Just value, which is the stack field that deletion works on!”

We found it easier to exclude the record notation in the output
of Extrapolate. In principle, it could be added. Later, in Table 6,
we compare the results uniformly avoiding the record notation
although some other tools support it.

4.5 Generalizations as property refinements
Whenever Extrapolate finds a generalised condition C for a property
P to fail and we suspect that the property is incorrect rather than the
code under test, we can directly derive from it a candidate variant
of that property: not C ==> P. In this way, Extrapolate is also a tool
that assists in the refinement of initially conjectured properties, too
wide in their scope to be generally true, into more precise variants
with scopes defined by conditions.

The actual antecedent introduced in such a refinement may be a
simplified equivalent of ‘not C’. Or it may be a different condition,
prompted and informed by C, but which the programmer conjec-
tures to be (closer to) the exact necessary and sufficient condition
for the property to hold. A programmer using testing without any
generalising extrapolation has far more need for such conjectures
and has to work harder to find them.

The process of extrapolated checking followed by property re-
finement may be iterative, terminating when testing finds no coun-
terexample at all. There may be intermediate steps as Extrapolate
generalisations are often still approximations — either too general
or not general enough. Adding or strengthening an antecedent
condition allows us to make progress as further testing reveals new
residual counterexamples and their generalisations.

Consider the following property about the words function de-
fined in the Haskell prelude:

prop_lengthWords :: String -> Bool

prop_lengthWords s = s /= "" ==>

length (words s) == length (filter isSpace s) + 1

When passed prop_lengthWords, Extrapolate reports:

*** Failed! Falsifiable (after 4 tests):

" "

Generalization:

' ':_

Conditional Generalization:

c:_ when c <= ' '

We forgot to account for lists that start (or end) with spaces. The
conditional generalization may be puzzling. Here is a clue:

> [c | c <- list, c <= ' ']

" \n\t"

The c values are drawn from the list enumeration of test charac-
ters. The function words considers not only ’ ’, but also ’\n’ and
’\t’ to be spaces.
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If we add isSpace to the background, Extrapolate reports:

> let chk = check `withBackground`

> [constant "isSpace" isSpace]

> chk prop_lengthWords

...

Conditional Generalization:

c:_ when isSpace c

Using this information, we refine our property:

prop_lengthWords s =

s /= "" && not (isSpace (head s))

&& not (isSpace (last s))

==>

length (words s) == length (filter isSpace s) + 1

Extrapolate now reports:

> chk prop_lengthWords

*** Failed! Falsifiable (after 43 tests):

"a a"

Conditional Generalization:

c:' ':' ':c:"" when not (isSpace c)

We forgot to account for words separated by more than one space.
This becomes even clearer if we add Data.List.isInfixOf and
" " to the background and run Extrapolate again on the original
prop_lengthWords:

Conditional Generalization:

cs when " " `isInfixOf` cs

We finally reach a correct property of the function words:

prop_lengthWords s = noDoubleSpace (" " ++ s ++ " ")

==>

length (words s) == length (filter isSpace s) + 1

where

noDoubleSpace s = and [not (isSpace a && isSpace b)

|(a,b) <- zip s (tail s)]

The number of words in a string is given by the number of spaces
plus one so long as there are no leading, trailing or double spaces.

4.6 Performance Summary
Performance results are summarized in Table 1. For all example
applications, Extrapolate takes at most a second to produce uncon-
ditional generalizations. For the calculator and XMonad examples,
Extrapolate also takes at most a second to produce conditional gen-
eralizations. For the sorting and parser applications, Extrapolate
takes respectively 5 and 9 seconds to consider conditional gener-
alizations. The Table also includes results for other tools, to be
discussed in §6.

Our tool and examples were compiled using ghc -O2 (version
8.2.1) under Linux. The platform was a PC with a 2.2Ghz 4-core
processor and 8GB of RAM.

5 RELATEDWORK
Since the introduction of QuickCheck [10–12], other property-
based testing libraries and techniques have been developed. For
Haskell, we can cite SmallCheck, Lazy SmallCheck [32, 33] and Feat
[15]. For Curry, there’s EasyCheck [9]. For Erlang, there’s PropEr
[29] and QuviQ QuickCheck [1]. For CLEAN, there’s GAST [25].

Tracing and step-by-step evaluation. A lot of research has been
done on tracing and step-by-step evaluation. In the realm of Haskell,
we can note tools such as Freja [27, 28], Hat [7, 8, 37] and Hood
[16]. These tools facilitate the process of locating faults in programs.
Extrapolate on the other hand does not directly improve this pro-
cess, but rather gives the programmer improved results to inform it.
Except when a generalized counterexample makes it very obvious
where the fault is, Extrapolate does not replace tools like Freja, Hat
and Hood, but complements them. Claessen et al. [13] explore the
combined use of property-based testing and tracing.

Property discovery and refinement. QuickSpec [14, 35] and Spec-
ulate [5] are tools capable of automatically conjecturing properties
given a collection of Haskell functions. Like Extrapolate, these tools
rely mainly on testing to achieve their results. Extrapolate does
not directly conjecture properties, but its generalized counterex-
amples can be seen as properties about faults. In Example 1.1, the
counterexample x (x:x:_) can be seen as the following property:

\x xs -> not $ prop_sortCount x (x:x:xs)

Extrapolate’s generalization aims to find the largest test space in
which the negation of the property under test succeeds. As stated
in §3, Extrapolate uses Speculate internally.

FitSpec [4] is a tool capable of guiding refinements of Haskell test
properties. FitSpec generates mutant variations of functions under
test against a given property set, recording any surviving mutants
that pass all tests. Reported surviving mutants prompt the user to
amend or to add new properties making the property set stronger.
FitSpec can guide refinements of properties more generally whereas
Extrapolate can guide refinements of incorrect conditions of one
property at a time (§4.5).

Program Synthesis. Magic Haskeller [19–22] and IGOR II [17, 18,
23] are systems for program synthesis using inductive functional
programming techniques [24]. They are able to produce programs
based on a limited list of input-output bindings and a set of back-
ground functions. Similarly, there are PROGOL [26], FOIL [31] and
GOLEM [6] for logic programs. There is potential for the application
of these systems and their techniques to generalize counterexam-
ples: based on which test inputs pass or fail, generate a program to
describe a set of counterexamples.

Lazy SmallCheck. Lazy SmallCheck [32, 33] is a property-based
testing tool that uses laziness to prune the search space. Before
testing fully defined test values, it tries partially defined test values:
if a property fails or passes for a partially defined value, more
defined variations of that value need not be tested. As a side-effect
of this test strategy, Lazy SmallCheck is able to return partially
defined values as counterexamples (see Table 4). These can be read
as generalized counterexamples. In §6 we compare results of Lazy
SmallCheck to those of Extrapolate.
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Table 1: Summary of results for five different applications, testing properties with Extrapolate, SmartCheck and Lazy Small-
Check; #-symbols = #-constants + #-variables; #-constants = number of constants in the reported counterexamples; #-variables
= number of variables in the reported counterexamples; generality = how general is the counterexample ( = least general;
= most general; × = invalid/loose); runtime = rounded elapsed time; space = peak memory residency. SmartCheck’s result for
the faulty XMonad example is presented as reported by Pike [30] and does not include runtime and memory figures.

Example & Property Tool #-
sy
m
bo

ls

#-
co
ns
ta
nt
s

#-
va
ria

bl
es

ge
ne
ra
lit
y

Runtime Memory

Faulty sort (§1) Ungeneralized 6 6 0 < 1s 23MB
\x xs -> count x (sort xs) Lazy SmallCheck 6 6 0 < 1s 33MB

== count x xs SmartCheck (min) 6 5 1 < 1s 22MB
SmartCheck (median) 12 11 1 < 1s 22MB
Extrapolate 6 2 4 < 1s 26MB
Extrapolate (side) 8 4 4 5s 34MB

Faulty noDiv0 (§4.2) Ungeneralized 8 8 0 < 1s 23MB
\e -> noDiv0 e Lazy SmallCheck 8 7 1 < 1s 33MB
==> eval e /= Nothing SmartCheck (min/median) 7 6 1 × < 1s 22MB

Extrapolate 8 7 1 < 1s 26MB
Extrapolate (side) 10 8 2 < 1s 28MB

Faulty parser (§4.3) Ungeneralized 17 17 0 < 1s 25MB
\e -> read’ (show’ e) == e Lazy SmallCheck 17 17 0 12s 36MB

SmartCheck (min) 17 17 0 < 1s 23MB
SmartCheck (median) 27 27 0 < 1s 23MB
Extrapolate 14 7 7 < 1s 27MB
Extrapolate (side) 16 7 9 9s 35MB

Faulty XMonad (§4.4) Ungeneralized 16 16 0 < 1s 28MB
prop_delete SmartCheck 13 9 4 – –

Extrapolate 12 4 8 < 1s 30MB
Extrapolate (side) 15 7 8 < 1s 31MB

Table 2: Extrapolate contrasted with Lazy SmallCheck and
SmartCheck: = yes; = no.

Sm
ar
tC
he
ck

Ex
tr
ap
ol
at
e

La
zy

SC

Random testing
Enumerative testing
Demand-driven testing

Generalized counterexamples
strict
partial (w/ undefined values)
functional generalizations
repeated variables
side conditions

SmartCheck. Because QuickCheck tests values randomly, it does
not always return small counterexamples, but relies on shrinking
[10] to derive smaller counterexamples from larger ones. Smart-
Check [30] is an extension to QuickCheck that provides two im-
provements: a better algorithm for shrinking and generalization
of counterexamples. SmartCheck’s generalization algorithm per-
forms both universal and existential quantification but does not
allow repeated variables. SmartCheck is perhaps the most closely
related tool to Extrapolate, and Pike’s paper inspired the work re-
ported here. In §6 we compare results of SmartCheck to those of
Extrapolate.

Table 2 compares in summary three tools for Haskell able to re-
port generalized counterexamples: Lazy SmallCheck, SmartCheck
and Extrapolate. The key contribution of Extrapolate is allowing
for repeated variables and side conditions in generalized counterex-
amples.
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Table 3: Counterexamples for the count property of sort (Ex-
ample 1.1 from§1) reported byExtrapolate, SmartCheck and
Lazy SmallCheck.

Tool Counterexample

Ungeneralized 0 [0,0]
Lazy SmallCheck 0 [0,0]
SmartCheck (min) 4 (4:4:x0)
SmartCheck 9 (8:17:9:9:x0)
Extrapolate x (x:x:_)
Extrapolate (side) x xs when count x xs > 1

6 COMPARATIVE EVALUATION
We now revisit examples from §4 comparing results of Extrapolate
with results of SmartCheck and Lazy SmallCheck.

Terms. The following paragraphs define some of the terms used
in evaluating results of different tools: generality and loose coun-
terexamples.

Generality. The more general the counterexample, the better it
is. We consider a generalized test-case description more general
than another if:

• it strictly subsumes another;
• it includes a larger set of failing test cases.

We say that a generalization is maximal when no more general
description exists.

Loose counterexamples. When a reported generalized counterex-
ample is too general and includes inputs that are not counterexam-
ples, we say it is loose. Later in this section, we shall see examples
of this.

Representatives and Median values. SmartCheck randomly tests
values and does not usually report the same counterexamples. In
Tables 3–6 counterexamples for SmartCheck are median represen-
tatives only. In Table 1, the numbers of symbols, constructors and
variables are the median values from 1000 sample runs.

Versions used. We have used the following versions for each tool:
• Lazy SmallCheck: version of 2014-07-07 — compiled with
GHC 7.8.4;

• SmartCheck: version 0.2.4 — compiled with GHC 8.0.2;
• Extrapolate: version 0.3.0 — compiled with GHC 8.2.1.

Summary Table. Table 1 summarizes all results. For most ex-
amples, Extrapolate gives more general results than either Lazy
SmallCheck or SmartCheck. For all examples, Extrapolate gives
results at least as general as Lazy SmallCheck and SmartCheck.

All tools usually report their results within a second, a reason-
able time when testing a property. Extrapolate is slower to produce
conditional generalizations for the sort and parser examples, tak-
ing respectively 5s and 9s. This increased runtime is still acceptable
as generalization is not performed for every property under test
but only for those that fail. There are no significant differences in
memory use.

Table 4: Counterexamples for the property involving noDiv0
(§4.2) reported by Extrapolate, SmartCheck and Lazy Small-
Check. SmartCheck reports loose counterexamples.

Tool Counterexample

Ungeneralized Div (C 0) (Add (C 0) (C 0))
Lazy SmallCheck Div (C _) (Add (C 0) (C 0))
SmartCheck Div x0 (Add (C (-5)) (C 5))
Extrapolate Div (C _) (Add (C 0) (C 0))
Extrapolate (side) Div e1 (Add (C 0) (C 0))

when noDiv0 e1

Faulty sort (§1). See Table 3. The counterexample reported by
Extrapolate has the same number of symbols as the one reported by
Lazy SmallCheck. Lazy SmallCheck is not able to report a general-
ization as the property being tested is not lazy. Extrapolate is able to
generalize the tail and the initial elements of the list whereas Smart-
Check3 is only able to generalize the tail. With the function count
in the background, Extrapolate reports a maximal generalization –
there is no more general description of the failing cases.

The reported runtime of five seconds needed to reach the condi-
tion involving count is for Extrapolate with a maximum explored
condition size of 6. With the default settings, Extrapolate reports
the condition involving elem in two seconds (§1).

Calculator and faulty noDiv0 (§4.2). See Table 4. Extrapolate and
Lazy SmallCheck report the same generalization. The generaliza-
tions SmartCheck reports in 96% of runs are too general — as they
include values that are not counterexamples if we read ==> as a
logical implication. Concerning the counterexample in Table 4:
> let prop e = noDiv0 e ==> eval e /= Nothing

> let x0 = (Div (C 0) (C 0))

> prop (Div x0 (Div (C (-5)) (C 5)))

True

With the precondition falsified, the property holds.

Faulty parser (§4.3). See Table 5. Neither Lazy SmallCheck nor
SmartCheck is able to report a generalization. Extrapolate is able
to report both an unconditional generalization and to improve it in
a further conditional generalization. Extrapolate reports counterex-
amples that are smaller than those reported by other tools.

Faulty XMonad (§4.4). See Table 6. SmartCheck4 and Extrapolate
give counterexamples of almost the same number of symbols, but
the Extrapolate counterexample has fewer constant constructors
and more variables. SmartCheck always assigns variable names
whereas Extrapolate uses “_” for unrepeated variables, making it
more immediately apparent where component values do not matter.
Extrapolate’s conditional and unconditional generalizations are
equivalent.

3Since SmartCheck only tries to generalize the first argument of properties (a design
choice), the property had to be uncurried for it to report a generalization.
4Due to time constraints we have not tested Lazy SmallCheck or SmartCheck on this
example. The SmartCheck counterexample is as reported by Pike [30] in the original
paper about SmartCheck.
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Table 5: Counterexamples for the parser property (§4.3) reported by Extrapolate, SmartCheck and Lazy SmallCheck.

Tool Counterexample

Ungeneralized Prog {modules = [], funcs = [Func {fnName = Var "a",
(full record syntax) args = [And (Int 0) (Bool False)], stmts = []}]}

Ungeneralized (simplified) Prog [] [Func (Var "a") [And (Int 0) (Bool False)] []]

Lazy SmallCheck Prog [] [Func (Var "a") [And (Int 0) (Bool False)] []]

SmartCheck Prog [] [Func (Var "U") [] [Return (And (Bool False) (Int 0))]]

Extrapolate Prog _ (Func _ (And (Int _) (Bool _):_) _:_)

Extrapolate (with side condition) Prog _ (Func _ (And e f:_) _:_) when e /= f

Table 6: Counterexamples for prop_delete from XMonad (§4.4) reported by Extrapolate and SmartCheck. The SmartCheck
counterexample is the one reported by Pike [30] in the original SmartCheck paper.

Tool Counterexample

Ungeneralized StackSet (Screen (Workspace 0 0 (Just (Stack ’a’ "" ""))) 0 0) [] [] (fromList [])
SmartCheck StackSet (Screen (Workspace x0 (-1) (Just x1)) 1 1) x2 x3 (fromList [])
Extrapolate StackSet (Screen (Workspace _ _ (Just _)) _ _) _ _ _
Extrapolate (side) StackSet (Screen (Workspace _ _ ms) _ _) _ _ _ when Nothing /= ms

7 CONCLUSIONS AND FUTUREWORK
Finally, we note some conclusions and avenues for future work.

7.1 Conclusions
In summary, we have presented a tool that is able to generalize
counterexamples of functional test properties. As set out in §2 and
§3, Extrapolate enumerates and tests generalizations, reporting the
ones that fail all tests. We have demonstrated in §4 Extrapolate’s
applicability to a range of examples. After reviewing related work in
§5, we have compared in §6 Extrapolate results with those reported
by other tools.

Value of reported laws. The conjectured generalizations reported
by Extrapolate are surprisingly accurate in practice, despite their
inherent uncertainty in principle. They can provide helpful insights
into the source of faults. Allowing repeated variables and side-
conditions makes possible the discovery of generalizations previ-
ously unreachable by other tools that provide similar functionality,
such as Lazy SmallCheck [32] and SmartCheck [30].

Ease of use. Extrapolate requires no more programming effort
than a regular property-based testing tool such as QuickCheck [11]
or SmallCheck [33]. If only standard Haskell datatypes are involved,
no extra Listable or Generalizable instances are needed. If user-
defined data types can be freely enumerated without a constraining
data invariant, instances can be automatically derived.

7.2 Future Work
We note a number of avenues for further investigation that could
lead to improved versions of Extrapolate or similar tools.

Type-by-type generalization. Although sufficiently fast for the
examples we have tried, the current algorithm to find counterex-
amples is very naïve. It considers generalizations replacing subex-
pressions of several different types by variables, all in one step.
We believe runtime could be reduced by switching to an iterative
process where generalization happens one type at a time. First at
outer types, then at inner types.

First generalizing with one variable per type. An interesting ob-
servation used in our previous work [5] and the work of Smallbone
et al. [35] could be used to speed-up Extrapolate. For a property
with several variables per type to be true, its one-variable-per-type
instance should be true as well, for example:

∀x y z.(x + y) + z = x + (y + z) ⇒ ∀x .(x + x) + x = x + (x + x)

The same is true for generalized counterexamples: if lists of the
form x:y:xs always falsify a property, then lists of the form x:x:xs
should as well. Based on this observation, we can test one-variable-
per-type generalizations first, potentially reducing the search space.

Generalizing from several counterexamples. The current version
of Extrapolate bases its generalizations on a single counterexample.
As mentioned in §5, it may be possible to use techniques from
inductive functional programming [24] to base its generalizations
on several counterexamples. This might reduce the time needed to
produce generalizations or increase their accuracy.

Multiple generalizations. Reported generalizations are derived
from initial counterexamples. After finding a generalization, Extra-
polate could search for other counterexamples and report additional
generalizations. These might be of additional help in finding the
source of faults.
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Parallelism. As away to improve performance, particularly when
dealing with costly test functions, we could parallelize the testing
of different enumerated generalizations among multiple processors.

Automatically include functions occurring in properties in the back-
ground. In several examples (§4), we provided functions present in
the property as background functions for side conditions, improv-
ing generalized counterexamples. This could be done automatically
to improve out-of-the-box results.

Alternative configuration parameters. Future versions of Extra-
polate could offer improved control of configuration parameters. As
briefly mentioned in §2, the size limit on side conditions is a very
fragile parameter: incrementing it may greatly increase runtime.
To make it easier to configure, future versions of Extrapolate could
offer a time-limit parameter for when exploring conditions.

Custom generic derivation hierarchy. The improvement of coun-
terexamples in Extrapolate by generalization can be compared with
the improvement of counterexamples from QuickCheck by shrink-
ing. In QuickCheck, though there are some proposed default generic
derivation rules for shrinking, the shrinking methods are also ex-
posed and custom shrinking functions can be declared explicitly. In
Extrapolate, the background is a bit like that: there are defaults, and
options to declare more. But the method of defining and searching
the hierarchy of generalizations is a fixed default. Allowing it to
be overridden could be one way to solve the problem of generaliza-
tions when algebraic datatype values cannot be freely generated as
there are invariant constraints.

AVAILABILITY
Extrapolate is freely available with a BSD3-style license from:

• https://hackage.haskell.org/package/extrapolate
• https://github.com/rudymatela/extrapolate

This paper describes Extrapolate version 0.3.0.
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